Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium

نویسندگان

  • Norihiro Takekawa
  • Masayoshi Nishiyama
  • Tsuyoshi Kaneseki
  • Tamotsu Kanai
  • Haruyuki Atomi
  • Seiji Kojima
  • Michio Homma
چکیده

Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s(-1) at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na(+). As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na(+) for energy coupling of the flagellar motor. The Na(+)-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tetrameric MotA complex as the core of the flagellar motor stator from hyperthermophilic bacterium

Rotation of bacterial flagellar motor is driven by the interaction between the stator and rotor, and the driving energy is supplied by ion influx through the stator channel. The stator is composed of the MotA and MotB proteins, which form a hetero-hexameric complex with a stoichiometry of four MotA and two MotB molecules. MotA and MotB are four- and single-transmembrane proteins, respectively. ...

متن کامل

Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors.

The bacterial flagellar motor is driven by the electrochemical potential of specific ions, H(+) or Na(+). The motor consists of a rotor and stator, and their interaction generates rotation. The stator, which is composed of PomA and PomB in the Na(+) motor of Vibrio alginolyticus, is thought to be a torque generator converting the energy of ion flux into mechanical power. We found that specific ...

متن کامل

Properties of sodium-driven bacterial flagellar motor: A two-state model approach

Bacterial flagellar motor (BFM) is one of the ion-driven molecular machines, which drives the rotation of flagellar filaments and enable bacteria to swim in viscous solutions. Understanding its mechanism is one challenge in biophysics. Based on previous models and inspired by the idea used in description of motor proteins, in this study one two-state model is provided. Meanwhile, according to c...

متن کامل

Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells.

The energy-transducing cytoplasmic membrane of bacteria contains pumps and antiports maintaining the membrane potential and ion gradients. We have developed a method for rapid, single-cell measurement of the internal sodium concentration ([Na(+)](in)) in Escherichia coli using the sodium ion fluorescence indicator, Sodium Green. The bacterial flagellar motor is a molecular machine that couples ...

متن کامل

Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor.

The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-drive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015